2017年6月8日 星期四

Excel and Frontline Solver - SUMPRODUCT function (Linear Optimization)

Linear Optimization

Linear objective functions and linear constraints

problem #10, p. 252 [1]
a. and b.
--- Excel and Frontline Solver  ---
Data
Componet Hotel Restaurant Market
Decision 10000 32500 30000
wholesale Price 1.25 1.5 1.4             Total sales =  103250
Component Hotel Restaurant Market Cost Per Pound Max num
Robusta 20% 35% 10% $0.60 40000
Javan Arabica 40% 15% 35% $0.80 25000
Liberica 15% 20% 40% $0.55 20000
Brazilian Arabica 25% 30% 15% $0.70 45000
Minimum 10000 25000 30000               No more than 100000

Constraints Hotel Restaurant Market Each bean total Each bean expense
Robusta 2000 11375 3000 16375 $9,825.00
Javan Arabica 4000 4875 10500 19375 $15,500.00
Liberica 1500 6500 12000 20000 $11,000.00
Brazilian Arabica 2500 9750 4500 16750 $11,725.00
Each brand total 10000 32500 30000           Total Expense = $48,050.00
        Bean total= 72500
Profits = $55,200.00
a.
     The company should buy 16375 pounds Robusta, 19375 pounds Javan Arabica, 20000 poundsLiberrica,
and 16750 pounds Brazilian Arbica.
b. 
     According to solver's solution, only Liberica reach max weekly availability, so Liberica is the economic
value componet. However, the number of Liberica already reach maximum number. There is no economic
value of an additional pound's worth of plant capacity.
--------------------------------------------------------------------------------------------------------------------------
c.
--- Excel and Frontline Solver  ---
Data
Componet Hotel Restaurant Market
Decision 10000 32505 30000
wholesale Price 1.25 1.5 1.4         Total sales =  103257.5
Component Hotel Restaurant Market Cost Per Pound Max num
Robusta 20% 35% 10% $0.60 40000
Javan Arabica 40% 15% 35% $0.80 25000
Liberica 15% 20% 40% $0.55 20001
Brazilian Arabica 25% 30% 15% $0.70 45000
Minimum 10000 25000 30000      No more than 100000

Constraints Hotel Restaurant Market Each bean total Each bean expense
Robusta 2000 11376.75 3000 16376.75 $9,826.05
Javan Arabica 4000 4875.75 10500 19375.75 $15,500.60
Liberica 1500 6501 12000 20001 $11,000.55
Brazilian Arabica 2500 9751.5 4500 16751.5 $11,726.05
Each brand total 10000 32505 30000           Total Expense = $48,053.25
                   Bean total = 72505


Profits = $55,204.25
Previous Add one pound
Liberica 20000 20001
Profits 55200 55204.25 value =  4.25
4.25 + 0.55 = 4.8

The company can earn more $4.25 than before, but Solver already minus 0.55 as additional pound ofs
Liberica's expense. Thus, if the company want to earn more money, the company should pay less than $4.8.


d.
Data
Component          Hotel  Restaurant       Market
Decision 20000 25000 30000
wholesale Price 1.25 1.5 1.4 Total sales =  104500
Component Hotel Restaurant     Market Cost Per Pound       Max num
Robusta 20% 35% 10% $0.60 40000
Javan Arabica 40% 15% 35% $0.80 25000
Liberica 15% 20% 40% $0.55 20000
Brazilian Arabica 25% 30% 15% $0.70 45000
Minimum 25000 25000 30000 No more than 100000
Constraints Hotel Restaurant Market Each bean total Each bean expense
Robusta 4000 8750 3000 15750 $9,450.00
Javan Arabica 8000 3750 10500 22250 $17,800.00
Liberica 3000 5000 12000 20000 $11,000.00
Brazilian Arabica 5000 7500 4500 17000 $11,900.00
Each brand total 20000 25000 30000
 Total 
Expense 
$50,150.00
Bean
total=
75000
Profits =  $54,350.00
Hotel Minimum 0 5000 10000 15000 20000 25000
Profits 56050 55625 55200 54775 54350 54350
e.
Data
Componet Hotel Restaurant Market
Decision 10000 32500 30000
wholesale Price 1.25 1.5 1.4    Total sales =  103250
Component Hotel Restaurant Market Cost Per Pound    Max num
Robusta 20% 35% 10% $1.20 40000
Javan Arabica 40% 15% 35% $0.80 25000
Liberica 15% 20% 40% $0.55 20000
Brazilian Arabica 25% 30% 15% $0.70 45000
Minimum 10000 25000 30000     No more than 100000
Constraints Hotel Restaurant Market Each bean total      Each bean expense
Robusta 2000 11375 3000 16375 $19,650.00
Javan Arabica 4000 4875 10500 19375 $15,500.00
Liberica 1500 6500 12000 20000 $11,000.00
Brazilian Arabica 2500 9750 4500 16750 $11,725.00
Each brand total 10000 32500 30000    Total Expense  $57,875.00
Bean total= 72500
Profits =  $45,375.00
Robusta
Cost Per Pound 0.20 0.40 0.60 0.80 1.00 1.20
Profits 61,750.00 58,475.00 55,200.00 51,925.00 48,650.00 45,375.00
Reference:
[1] Powell, Stephen G. Management Science: The Art Of Modeling With Spreadsheets, 4Th Edition. 1st ed. John Wiley & Sons, 2013. Print.

沒有留言:

張貼留言

Python program to display calendar

# Python program to display calendar of given month of the year # importing calendar module for calendar operations import calendar # set t...