2017年6月15日 星期四

Personal Exp.

Education
M.S. Data Analytics Engineering
George Mason University, Fairfax, VA                                               Graduated in May 2017

B.S. Mathematics and information education
National Taipei University of Education                                             Graduated in June 2011

Technical Skills 
EXCEL          
·      Pivot table, LOOPUP function
·      Frontline Solvers projects includes Optimization, Decision Tree, and Monte Carlo.

SQL
·      Logical Component

R programming                                                       
·      Clean data and then input missing values to create statistical models.
·      Preprocessing dataset and create data mining clustering and classification model.
·      Apply on Bayesian Networks.
·      Experience on R shiny and Natural Language Processing package

Power BI &Tableau
·      Familiar with functions in Education version

Python                                                                  
·      Preprocess datasets and use scikit-learn package to create clustering and classification algorism
·      Apply on probability and statistics learning
·      Experience on Natural Language toolkit

Master Courses
Mega Data, Information Processing, Analytics and Decision Analysis, and Data Analytics Final Project

Projects

Analytics and Decision Analysis project: Use EXCEL [1] [2] for Pivot table, LOOPUP function and Frontline Solver to create Optimization [1] [2] [3], Decision Tree, and Monte Carlo

Meta Data project: Processing data by R and then use WEKA to do data mining. Finally, this project use R, Power BI, and Tableau for data visualization.

InformationProcessing Project: Processing data by R for data mining processes and R and Tableau for data visualization.


Data Analytics FinalProject: Data analytics jobs in Virginia by processing datasets by R NLP package and use R, Power BI, and Tableau for data visualization.

2017年6月8日 星期四

Excel and Frontline Solver - INDEX function

Heuristic Methods
INDEX function

problem #6, p. 333 [1] [2]
a.
Data Amsterdam Athens Berlin Copenhagen Dublin Lisbon London Luxembourg Madrid Paris Rome Brussels
  From/To 1 2 3 4 5 6 7 8 9 10 11 12
Amsterdam 1 0 2166 577 622 712 1889 339 319 1462 430 1297 175
Athens 2 2166 0 1806 2132 2817 2899 2377 1905 2313 2100 1053 2092
Berlin 3 577 1806 0 348 1273 2345 912 598 1836 878 1184 653
Copenhagen 4 622 2132 348 0 1203 2505 942 797 2046 1027 1527 768
Dublin 5 712 2817 1273 1203 0 1656 440 914 1452 743 1849 732
Lisbon 6 1889 2899 2345 2505 1656 0 1616 1747 600 1482 1907 1738
London 7 339 2377 912 942 440 1616 0 475 1259 331 1419 300
Luxembourg 8 319 1905 598 797 914 1747 475 0 1254 293 987 190
Madrid 9 1462 2313 1836 2046 1452 600 1259 1254 0 1033 1308 1293
Paris 10 430 2100 878 1027 743 1482 331 293 1033 0 1108 262
Rome 11 1297 1053 1184 1527 1849 1907 1419 987 1308 1108 0 1173
Brussels 12 175 2092 653 768 732 1738 300 190 1293 262 1173 0


Order 1 2 3 4 5 6 7 8 9 10 11 12 1
City 12 1 4 3 2 11 9 6 5 7 10 8 12
Distaance 175 622 348 1806 1053 1308 600 1656 440 331 293 190

Minimum-distance = 8822
        The sequence is Brussels, Amsterdan, Copenhagen, Berlin, Athens, Rome, Madrid, Lisbon, Dublin, London, Paris, Luxembourg, and then Brussels. The length of the minimum-distance tour is 8822.
b.

Data Amsterdam Athens Berlin Copenhagen Dublin Lisbon London Luxembourg Madrid Paris Rome Brussels
  From/To 1 2 3 4 5 6 7 8 9 10 11 12
Amsterdam 1 0 2166 577 622 712 1889 339 319 1462 430 1297 175
Athens 2 2166 0 1806 2132 2817 2899 2377 1905 2313 2100 1053 2092
Berlin 3 577 1806 0 348 1273 2345 912 598 1836 878 1184 653
Copenhagen 4 622 2132 348 0 1203 2505 942 797 2046 1027 1527 768
Dublin 5 712 2817 1273 1203 0 1656 440 914 1452 743 1849 732
Lisbon 6 1889 2899 2345 2505 1656 0 1616 1747 600 1482 1907 1738
London 7 339 2377 912 942 440 1616 0 475 1259 331 1419 300
Luxembourg 8 319 1905 598 797 914 1747 475 0 1254 293 987 190
Madrid 9 1462 2313 1836 2046 1452 600 1259 1254 0 1033 1308 1293
Paris 10 430 2100 878 1027 743 1482 331 293 1033 0 1108 262
Rome 11 1297 1053 1184 1527 1849 1907 1419 987 1308 1108 0 1173
Brussels 12 175 2092 653 768 732 1738 300 190 1293 262 1173 0


Order 1 2 3 4 5 6 7 8 9 10 11 12
City 12 1 4 3 8 10 7 5 6 9 11 2
Distaance 175 622 348 598 293 331 440 1656 600 1308 1053

Minimum-distance = 7424


        The sequence is Brussels, Amsterdan, Copenhagen, Berlin, Luxembourg, Paris, London, Dublin, Lisbon, Madrid, Rome, and Athens.


Additional questions to answer for Part B:

Amsterdam Athens Berlin Copenhagen Dublin Lisbon London Luxembourg Madrid Paris Rome Brussels
From/To 1 2 3 4 5 6 7 8 9 10 11 12
Amsterdam 1 0 2166 577 622 712 1889 339 319 1462 430 1297 175
Athens 2 2166 0 1806 2132 2817 2899 2377 1905 2313 2100 1053 2092
Berlin 3 577 1806 0 348 1273 2345 912 598 1836 878 1184 653
Copenhagen 4 622 2132 348 0 1203 2505 942 797 2046 1027 1527 768
Dublin 5 712 2817 1273 1203 0 1656 440 914 1452 743 1849 732
Lisbon 6 1889 2899 2345 2505 1656 0 1616 1747 600 1482 1907 1738
London 7 339 2377 912 942 440 1616 0 475 1259 331 1419 300
Luxembourg 8 319 1905 598 797 914 1747 475 0 1254 293 987 190
Madrid 9 1462 2313 1836 2046 1452 600 1259 1254 0 1033 1308 1293
Paris 10 430 2100 878 1027 743 1482 331 293 1033 0 1108 262
Rome 11 1297 1053 1184 1527 1849 1907 1419 987 1308 1108 0 1173
Brussels 12 175 2092 653 768 732 1738 300 190 1293 262 1173 0


Order 1 2 3 4 5 6 7 8 9 10 11 12
City 6 9 5 7 10 8 12 1 4 3 11 2
Distaance 600 1452 440 331 293 190 175 622 348 1184 1053

Minimum-distance = 6688

        If the sequence is Athens, Rome, Madrid, Lisbon, Dublin, London, Paris, Luxembourg, Berlin, Copenhagen, Amsterdan, and Brussels, the solution will have same objective value as answer b.
Because the route is same, the distance is same.

        In this sheet, I calculate the length of the minimum-distance tour. If the trip start from Lisbon, the length of the minimum-distance tour is shortest. Therefore, I should tell my decision-maker these solutions are not truely optimal.


        If the trip don't need to go back to Brussels, the  order will change and reduce distance 1398. The solution of answer b is fewer than answer a..

Reference:
[1] Powell, Stephen G. Management Science: The Art Of Modeling With Spreadsheets, 4Th Edition. 1st ed. John Wiley & Sons, 2013. Print.
[2] "Solving Travelling Salesman Problem(TSP) using Excel Solver", YouTube, 2017. [Online]. Available: https://www.youtube.com/watch?v=-E3rSoClgMI. [Accessed: 08- Jun- 2017].

Python program to display calendar

# Python program to display calendar of given month of the year # importing calendar module for calendar operations import calendar # set t...